LIB.SU: ЭЛЕКТРОННАЯ БИБЛИОТЕКА

Машинное обучение

Книга: Машинное обучение. Автор: Джейд Картер

Машинное обучение

 

Автор: Джейд Картер

Дата написания: 2023

Возрастное ограничение: 16+

Текст обновлен: 19.11.2023

 

Аннотация

 

Книга представляет комплексное руководство по применения МО в сфере бизнеса. Автор исследует различные аспекты МО и его роль в современных бизнес‑процессах, а также предлагают практические рекомендации по использованию этих технологий для достижения конкурентных преимуществ и улучшения результатов.В книге рассматриваются алгоритмы МО и объясняется, как они могут быть применены в различных сферах бизнеса, включая маркетинг, финансы, производство, здравоохранение и другие. Автор предлагает практические примеры и сценарии использования МО и как оно может быть внедрено в организациях.Особое внимание уделяется вопросам предобработки и анализу данных. Методы работы с Big Data и подходы к обработке неструктурированных данных. Этические и юридические аспекты МО в бизнесе, включая вопросы конфиденциальности и защиты данных.Книга полезна для менеджеров, аналитиков, предпринимателей и всех, кто заинтересован в использовании МО для оптимизации бизнес‑процессов и принятия обоснованных решений.

 

Джейд Картер

Машинное обучение

 

 

Список сокращений

 

1. МО – машинное обучение

2. ИИ – искусственный интеллект

3. СЗ – супервизированное обучение

4. БЗ – безнадзорное обучение

5. ПЗ – полузаданные обучение

6. НС – нейронная сеть

7. SVM – метод опорных векторов

8. RF – случайный лес

9. CNN – сверточная нейронная сеть

10. RNN – рекуррентная нейронная сеть

11. MLP – многослойный персептрон

12. SGD – стохастический градиентный спуск

13. NLP – обработка естественного языка

14. CV – компьютерное зрение

15. DL – глубокое обучение

16. ROI – возврат инвестиций

17. KPI – ключевые показатели эффективности

18. CRM – управление взаимоотношениями с клиентами

19. ERP – система планирования ресурсов предприятия

20. BI – бизнес‑аналитика

 

 

Глава 1: Введение в машинное обучение и его роль в бизнесе

 

 

1.1. Основные понятия и термины в машинном обучении

 

Обучение с учителем – форма машинного обучения, где системе предоставляется обучающая выборка с входными данными и соответствующими выходными значениями.

Признаки – характеристики или свойства объектов, которые описывают данные.

Метки (выходные значения, целевые переменные) – значения, которые система должна предсказывать или классифицировать на основе входных данных.

Модель – математическая функция, которая принимает входные данные и выдает предсказания или классификации.

Обучение – процесс, в ходе которого модель настраивается на основе обучающей выборки для минимизации ошибки предсказания.

Тестирование – процесс оценки производительности модели на новых данных, не участвующих в обучении, с целью оценки ее обобщающей способности.

Переобучение – состояние модели, когда она становится слишком сложной и настраивается на шум в данных, в результате чего ее способность обобщения страдает.

Недообучение – состояние модели, когда она слишком проста и не способна выявить сложные закономерности в данных, что приводит к низкой производительности на новых данных.

Гиперпараметры – параметры модели, которые задаются вручную перед началом обучения и влияют на ее поведение и производительность, например, скорость обучения, количество эпох и размер скрытых слоев в нейронной сети.

Алгоритмы обучения – методы и процедуры, используемые для обучения моделей на основе обучающих данных, например, линейная регрессия, метод опорных векторов (SVM), деревья решений, нейронные сети и другие.

Регуляризация – техника, используемая для предотвращения переобучения модели путем добавления штрафов или ограничений на значения параметров модели.

Кросс‑валидация – метод оценки производительности модели, который заключается в разделении обучающей выборки на несколько подмножеств (фолдов) для обучения и тестирования модели, с последующим усреднением результатов.

Метрики оценки – числовые значения, используемые для измерения качества предсказаний модели, например, точность, полнота, F‑мера, среднеквадратическая ошибка (MSE) и другие.

Разделение выборки – процесс разбиения общего набора данных на обучающую, тестовую и, иногда, валидационную выборки для обучения, тестирования и настройки модели соответственно.

Размер выборки – количество образцов данных, доступных для обучения модели.

Препроцессинг данных – этап подготовки данных перед обучением модели, включающий операции, такие как нормализация, масштабирование, заполнение пропущенных значений, кодирование категориальных признаков и другие.

Распределение данных – статистическая характеристика данных, которая описывает их вероятностные свойства, такие как среднее значение, дисперсия и форма распределения.